
From its launch in 2018 to mid 2025, EQUS published over 500 papers detailing scientific discoveries in fields as diverse as quantum information to new medical imaging technologies.
Access the full list of EQUS papers below.
2025
I. R. Berkman; A. Lyasota; G. G. Boo; J. G. Bartholomew; S. Q.Lim; B. C. Johnson; J. C. McCallum; B-B. Xu; S. Xie; N. V. Abrosimov; H-J. Pohl; R. L. Ahlefeldt; M. J. Sellars; C. Yin; S. Rogge
Long optical and electron spin coherence times for erbium ions in silicon Journal Article
In: npj Quantum Inf, vol. 11, no. 1, 2025, ISSN: 2056-6387.
@article{Berkman2025,
title = {Long optical and electron spin coherence times for erbium ions in silicon},
author = {I. R. Berkman and A. Lyasota and G. G. Boo and J. G. Bartholomew and S. Q.Lim and B. C. Johnson and J. C. McCallum and B-B. Xu and S. Xie and N. V. Abrosimov and H-J. Pohl and R. L. Ahlefeldt and M. J. Sellars and C. Yin and S. Rogge},
doi = {10.1038/s41534-025-01008-x},
issn = {2056-6387},
year = {2025},
date = {2025-12-00},
urldate = {2025-12-00},
journal = {npj Quantum Inf},
volume = {11},
number = {1},
publisher = {Springer Science and Business Media LLC},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
L. Pecorari; S. Jandura; G. K. Brennen; G. Pupillo
High-rate quantum LDPC codes for long-range-connected neutral atom registers Journal Article
In: Nat Commun, vol. 16, no. 1, 2025, ISSN: 2041-1723.
@article{Pecorari2025,
title = {High-rate quantum LDPC codes for long-range-connected neutral atom registers},
author = {L. Pecorari and S. Jandura and G. K. Brennen and G. Pupillo},
doi = {10.1038/s41467-025-56255-5},
issn = {2041-1723},
year = {2025},
date = {2025-12-00},
urldate = {2025-12-00},
journal = {Nat Commun},
volume = {16},
number = {1},
publisher = {Springer Science and Business Media LLC},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
R. S. Gupta; C. E. Wood; T. Engstrom; J. D. Pole; S. Shrapnel
A systematic review of quantum machine learning for digital health Journal Article
In: npj Digit. Med., vol. 8, no. 1, 2025, ISSN: 2398-6352.
Abstract | Links | BibTeX | Tags:
@article{Gupta2025,
title = {A systematic review of quantum machine learning for digital health},
author = {R. S. Gupta and C. E. Wood and T. Engstrom and J. D. Pole and S. Shrapnel},
doi = {10.1038/s41746-025-01597-z},
issn = {2398-6352},
year = {2025},
date = {2025-12-00},
urldate = {2025-12-00},
journal = {npj Digit. Med.},
volume = {8},
number = {1},
publisher = {Springer Science and Business Media LLC},
abstract = {<jats:title>Abstract</jats:title>
<jats:p>The growth in digitization of health data provides opportunities for using algorithmic techniques for data analysis. This systematic review assesses whether quantum machine learning (QML) algorithms outperform existing classical methods for clinical decisioning or health service delivery. Included studies use electronic health/medical records, or reasonable proxy data, and QML algorithms designed for quantum computing hardware. Databases PubMed, Embase, IEEE, Scopus, and preprint server arXiv were searched for studies dated 01/01/2015–10/06/2024. Of an initial 4915 studies, 169 were eligible, with 123 then excluded for insufficient rigor. Only 16 studies consider realistic operating conditions involving quantum hardware or noisy simulations. We find nearly all encountered quantum models form a subset of general QML structures. Scalability of data encoding is partly addressed but requires restrictive hardware assumptions. Overall, performance differentials between quantum and classical algorithms show no consistent trend to support empirical quantum utility in digital health.</jats:p>},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
<jats:p>The growth in digitization of health data provides opportunities for using algorithmic techniques for data analysis. This systematic review assesses whether quantum machine learning (QML) algorithms outperform existing classical methods for clinical decisioning or health service delivery. Included studies use electronic health/medical records, or reasonable proxy data, and QML algorithms designed for quantum computing hardware. Databases PubMed, Embase, IEEE, Scopus, and preprint server arXiv were searched for studies dated 01/01/2015–10/06/2024. Of an initial 4915 studies, 169 were eligible, with 123 then excluded for insufficient rigor. Only 16 studies consider realistic operating conditions involving quantum hardware or noisy simulations. We find nearly all encountered quantum models form a subset of general QML structures. Scalability of data encoding is partly addressed but requires restrictive hardware assumptions. Overall, performance differentials between quantum and classical algorithms show no consistent trend to support empirical quantum utility in digital health.</jats:p>
S. K. Bartee; W. Gilbert; K. Zuo; K. Das; T. Tanttu; C. H. Yang; N. D. Stuyck; S. J. Pauka; R. Y. Su; W. H. Lim; S. Serrano; C. C. Escott; F. E. Hudson; K. M. Itoh; A. Laucht; A. S. Dzurak; D. J. Reilly
Spin-qubit control with a milli-kelvin CMOS chip Journal Article
In: Nature, vol. 643, no. 8071, pp. 382–387, 2025, ISSN: 1476-4687.
Abstract | Links | BibTeX | Tags:
@article{Bartee2025,
title = {Spin-qubit control with a milli-kelvin CMOS chip},
author = {S. K. Bartee and W. Gilbert and K. Zuo and K. Das and T. Tanttu and C. H. Yang and N. D. Stuyck and S. J. Pauka and R. Y. Su and W. H. Lim and S. Serrano and C. C. Escott and F. E. Hudson and K. M. Itoh and A. Laucht and A. S. Dzurak and D. J. Reilly},
doi = {10.1038/s41586-025-09157-x},
issn = {1476-4687},
year = {2025},
date = {2025-07-10},
urldate = {2025-07-10},
journal = {Nature},
volume = {643},
number = {8071},
pages = {382--387},
publisher = {Springer Science and Business Media LLC},
abstract = {<jats:title>Abstract</jats:title>
<jats:p>A key virtue of spin qubits is their sub-micron footprint, enabling a single silicon chip to host the millions of qubits required to execute useful quantum algorithms with error correction<jats:sup>1–3</jats:sup>. However, with each physical qubit needing multiple control lines, a fundamental barrier to scale is the extreme density of connections that bridge quantum devices to their external control and readout hardware<jats:sup>4–6</jats:sup>. A promising solution is to co-locate the control system proximal to the qubit platform at milli-kelvin temperatures, wired up by miniaturized interconnects<jats:sup>7–10</jats:sup>. Even so, heat and crosstalk from closely integrated control have the potential to degrade qubit performance, particularly for two-qubit entangling gates based on exchange coupling that are sensitive to electrical noise<jats:sup>11,12</jats:sup>. Here we benchmark silicon metal-oxide-semiconductor (MOS)-style electron spin qubits controlled by heterogeneously integrated cryo-complementary metal-oxide-semiconductor (cryo-CMOS) circuits with a power density sufficiently low to enable scale-up. Demonstrating that cryo-CMOS can efficiently perform universal logic operations for spin qubits, we go on to show that milli-kelvin control has little impact on the performance of single- and two-qubit gates. Given the complexity of our sub-kelvin CMOS platform, with about 100,000 transistors, these results open the prospect of scalable control based on the tight packaging of spin qubits with a ‘chiplet-style’ control architecture.</jats:p>},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
<jats:p>A key virtue of spin qubits is their sub-micron footprint, enabling a single silicon chip to host the millions of qubits required to execute useful quantum algorithms with error correction<jats:sup>1–3</jats:sup>. However, with each physical qubit needing multiple control lines, a fundamental barrier to scale is the extreme density of connections that bridge quantum devices to their external control and readout hardware<jats:sup>4–6</jats:sup>. A promising solution is to co-locate the control system proximal to the qubit platform at milli-kelvin temperatures, wired up by miniaturized interconnects<jats:sup>7–10</jats:sup>. Even so, heat and crosstalk from closely integrated control have the potential to degrade qubit performance, particularly for two-qubit entangling gates based on exchange coupling that are sensitive to electrical noise<jats:sup>11,12</jats:sup>. Here we benchmark silicon metal-oxide-semiconductor (MOS)-style electron spin qubits controlled by heterogeneously integrated cryo-complementary metal-oxide-semiconductor (cryo-CMOS) circuits with a power density sufficiently low to enable scale-up. Demonstrating that cryo-CMOS can efficiently perform universal logic operations for spin qubits, we go on to show that milli-kelvin control has little impact on the performance of single- and two-qubit gates. Given the complexity of our sub-kelvin CMOS platform, with about 100,000 transistors, these results open the prospect of scalable control based on the tight packaging of spin qubits with a ‘chiplet-style’ control architecture.</jats:p>
T. Navickas; R. J. MacDonell; C. H. Valahu; V. C. Olaya-Agudelo; F. Scuccimarra; M. J. Millican; V. G. Matsos; H. L. Nourse; A. D. Rao; M. J. Biercuk; C. Hempel; I. Kassal; T. R. Tan
Experimental Quantum Simulation of Chemical Dynamics Journal Article
In: J. Am. Chem. Soc., vol. 147, no. 27, pp. 23566–23573, 2025, ISSN: 1520-5126.
@article{Navickas2025,
title = {Experimental Quantum Simulation of Chemical Dynamics},
author = {T. Navickas and R. J. MacDonell and C. H. Valahu and V. C. Olaya-Agudelo and F. Scuccimarra and M. J. Millican and V. G. Matsos and H. L. Nourse and A. D. Rao and M. J. Biercuk and C. Hempel and I. Kassal and T. R. Tan},
doi = {10.1021/jacs.5c03336},
issn = {1520-5126},
year = {2025},
date = {2025-07-09},
urldate = {2025-07-09},
journal = {J. Am. Chem. Soc.},
volume = {147},
number = {27},
pages = {23566--23573},
publisher = {American Chemical Society (ACS)},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
S-H. Lee; F. Thomsen; N. Fazio; B. J. Brown; S. D. Bartlett
Low-Overhead Magic State Distillation with Color Codes Journal Article
In: PRX Quantum, vol. 6, no. 3, 2025, ISSN: 2691-3399.
Abstract | Links | BibTeX | Tags:
@article{Lee2025b,
title = {Low-Overhead Magic State Distillation with Color Codes},
author = {S-H. Lee and F. Thomsen and N. Fazio and B. J. Brown and S. D. Bartlett},
doi = {10.1103/ch5r-cnfq},
issn = {2691-3399},
year = {2025},
date = {2025-07-00},
urldate = {2025-07-00},
journal = {PRX Quantum},
volume = {6},
number = {3},
publisher = {American Physical Society (APS)},
abstract = {<jats:p>Fault-tolerant implementation of non-Clifford gates is a major challenge for achieving universal fault-tolerant quantum computing with quantum error-correcting codes. Magic state distillation is the most well-studied method for this but requires significant resources. Hence, it is crucial to tailor and optimize magic state distillation for specific codes from both logical- and physical-level perspectives. In this work, we perform such optimization for two-dimensional color codes, which are promising due to their higher encoding rates compared to surface codes, transversal implementation of Clifford gates, and efficient lattice surgery. We propose two carefully designed distillation schemes based on the 15-to-1 distillation circuit and lattice surgery, differing in their methods for handling faulty rotations. Our first scheme employs faulty <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mi>T</a:mi></a:math> measurement, achieving infidelities of <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:mi>O</c:mi><c:mo stretchy="false">(</c:mo><c:msup><c:mi>p</c:mi><c:mn>3</c:mn></c:msup><c:mo stretchy="false">)</c:mo></c:math> for physical noise strength <g:math xmlns:g="http://www.w3.org/1998/Math/MathML" display="inline"><g:mi>p</g:mi></g:math>. To achieve lower infidelities, our second scheme integrates distillation with “cultivation” (a distillation-free approach to fault tolerantly prepare magic states through transversal Clifford measurements). Our second scheme achieves significantly lower infidelities (e.g., approximately <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" display="inline"><i:mn>2</i:mn><i:mo>×</i:mo><i:msup><i:mn>10</i:mn><i:mrow><i:mo>−</i:mo><i:mn>16</i:mn></i:mrow></i:msup></i:math> at <k:math xmlns:k="http://www.w3.org/1998/Math/MathML" display="inline"><k:mi>p</k:mi><k:mo>=</k:mo><k:msup><k:mn>10</k:mn><k:mrow><k:mo>−</k:mo><k:mn>3</k:mn></k:mrow></k:msup></k:math>), surpassing the capabilities of both cultivation and single-level distillation. Notably, to reach a given target infidelity, our schemes require approximately 2 orders of magnitude fewer resources than the previous best magic-state-distillation schemes for color codes.</jats:p>},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
E. C. I. Paterson; J. Bourhill; M. E. Tobar; M. Goryachev
Electromagnetic helicity in twisted cavity resonators Journal Article
In: Phys. Rev. A, vol. 112, no. 1, 2025, ISSN: 2469-9934.
@article{Paterson2025,
title = {Electromagnetic helicity in twisted cavity resonators},
author = {E. C. I. Paterson and J. Bourhill and M. E. Tobar and M. Goryachev},
doi = {10.1103/6gp4-76td},
issn = {2469-9934},
year = {2025},
date = {2025-07-00},
urldate = {2025-07-00},
journal = {Phys. Rev. A},
volume = {112},
number = {1},
publisher = {American Physical Society (APS)},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
N. Fazio; R. Harper; S. D. Bartlett
Logical Noise Bias in Magic State Injection Journal Article
In: Quantum, vol. 9, 2025, ISSN: 2521-327X.
Abstract | Links | BibTeX | Tags:
@article{Fazio2025,
title = {Logical Noise Bias in Magic State Injection},
author = {N. Fazio and R. Harper and S. D. Bartlett},
doi = {10.22331/q-2025-06-24-1779},
issn = {2521-327X},
year = {2025},
date = {2025-06-24},
urldate = {2025-06-24},
journal = {Quantum},
volume = {9},
publisher = {Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften},
abstract = {<jats:p>Fault-tolerant architectures aim to reduce the noise of a quantum computation. Despite such architectures being well studied a detailed understanding of how noise is transformed in a fault-tolerant primitive such as magic state injection is currently lacking. We use numerical simulations of logical process tomography on a fault-tolerant gadget that implements a logical <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>T</mml:mi><mml:mo>=</mml:mo><mml:mi>Z</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>π</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>/</mml:mo></mml:mrow><mml:mn>4</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> gate using magic state injection, to understand how noise characteristics at the physical level are transformed into noise characteristics at the logical level. We show how, in this gadget, a significant phase (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Z</mml:mi></mml:math>) bias can arise in the logical noise, even with unbiased noise at the physical level. While the magic state injection gadget intrinsically induces biased noise, with extant phase bias being further amplified at the logical level, we identify noisy error correction circuits as a key limiting factor in the circuits studied on the magnitude of this logical noise bias. Our approach provides a framework for assessing the detailed noise characteristics, as well as the overall performance, of fault-tolerant logical primitives.</jats:p>},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
W. M. Campbell; S. Parashar; L. Mariani; M. E. Tobar; M. Goryachev
Low-temperature properties of low-loss macroscopic lithium niobate bulk acoustic wave resonators Journal Article
In: Phys. Rev. B, vol. 111, no. 21, 2025, ISSN: 2469-9969.
@article{Campbell2025,
title = {Low-temperature properties of low-loss macroscopic lithium niobate bulk acoustic wave resonators},
author = {W. M. Campbell and S. Parashar and L. Mariani and M. E. Tobar and M. Goryachev},
doi = {10.1103/physrevb.111.214106},
issn = {2469-9969},
year = {2025},
date = {2025-06-00},
urldate = {2025-06-00},
journal = {Phys. Rev. B},
volume = {111},
number = {21},
publisher = {American Physical Society (APS)},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
L. J. Bond; M. J. Davis; J. Minář; R. Gerritsma; G. K. Brennen; A. Safavi-Naini
Global variational quantum circuits for arbitrary symmetric state preparation Journal Article
In: Phys. Rev. Research, vol. 7, no. 2, 2025, ISSN: 2643-1564.
Abstract | Links | BibTeX | Tags:
@article{Bond2025,
title = {Global variational quantum circuits for arbitrary symmetric state preparation},
author = {L. J. Bond and M. J. Davis and J. Minář and R. Gerritsma and G. K. Brennen and A. Safavi-Naini},
doi = {10.1103/physrevresearch.7.l022072},
issn = {2643-1564},
year = {2025},
date = {2025-06-00},
urldate = {2025-06-00},
journal = {Phys. Rev. Research},
volume = {7},
number = {2},
publisher = {American Physical Society (APS)},
abstract = {<jats:p>Quantum states that are symmetric under particle exchange play a crucial role in fields such as quantum metrology and quantum error correction. We use a variational circuit composed of global one-axis twisting and global rotations to efficiently prepare arbitrary symmetric states, i.e., any superposition of Dicke states. The circuit does not require local addressability or ancilla qubits and thus can be readily implemented in a variety of experimental platforms including trapped-ion quantum simulators and cavity QED systems. We provide analytic and numerical evidence that any <a:math xmlns:a="http://www.w3.org/1998/Math/MathML"><a:mi>N</a:mi></a:math>-qubit symmetric state can be prepared in <b:math xmlns:b="http://www.w3.org/1998/Math/MathML"><b:mrow><b:mn>2</b:mn><b:mi>N</b:mi><b:mo>/</b:mo><b:mn>3</b:mn></b:mrow></b:math> steps. We demonstrate the utility of our protocol by preparing (i) metrologically useful <c:math xmlns:c="http://www.w3.org/1998/Math/MathML"><c:mi>N</c:mi></c:math>-qubit Dicke states of up to <d:math xmlns:d="http://www.w3.org/1998/Math/MathML"><d:mrow><d:mi>N</d:mi><d:mo>=</d:mo><d:mn>300</d:mn></d:mrow></d:math> qubits in <e:math xmlns:e="http://www.w3.org/1998/Math/MathML"><e:mrow><e:mi mathvariant="script">O</e:mi><e:mo>(</e:mo><e:mn>1</e:mn><e:mo>)</e:mo></e:mrow></e:math> gate steps with theoretical infidelities <g:math xmlns:g="http://www.w3.org/1998/Math/MathML"><g:mrow><g:mn>1</g:mn><g:mo>−</g:mo><g:mi mathvariant="script">F</g:mi><g:mo><</g:mo><g:msup><g:mn>10</g:mn><g:mrow><g:mo>−</g:mo><g:mn>3</g:mn></g:mrow></g:msup></g:mrow></g:math>, (ii) the <i:math xmlns:i="http://www.w3.org/1998/Math/MathML"><i:mrow><i:mi>N</i:mi><i:mo>=</i:mo><i:mn>9</i:mn></i:mrow></i:math> Ruskai codewords in <j:math xmlns:j="http://www.w3.org/1998/Math/MathML"><j:mrow><j:mi>P</j:mi><j:mo>=</j:mo><j:mn>4</j:mn></j:mrow></j:math> gate steps with <k:math xmlns:k="http://www.w3.org/1998/Math/MathML"><k:mrow><k:mn>1</k:mn><k:mo>−</k:mo><k:mi mathvariant="script">F</k:mi><k:mo><</k:mo><k:msup><k:mn>10</k:mn><k:mrow><k:mo>−</k:mo><k:mn>4</k:mn></k:mrow></k:msup></k:mrow></k:math>, and (iii) the <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow><m:mi>N</m:mi><m:mo>=</m:mo><m:mn>13</m:mn></m:mrow></m:math> Gross codewords in <n:math xmlns:n="http://www.w3.org/1998/Math/MathML"><n:mrow><n:mi>P</n:mi><n:mo>=</n:mo><n:mn>7</n:mn></n:mrow></n:math> gate steps with <o:math xmlns:o="http://www.w3.org/1998/Math/MathML"><o:mrow><o:mn>1</o:mn><o:mo>−</o:mo><o:mi mathvariant="script">F</o:mi><o:mo><</o:mo><o:msup><o:mn>10</o:mn><o:mrow><o:mo>−</o:mo><o:mn>4</o:mn></o:mrow></o:msup></o:mrow></o:math>. Focusing on trapped-ion platforms, for the <q:math xmlns:q="http://www.w3.org/1998/Math/MathML"><q:mrow><q:mi>N</q:mi><q:mo>=</q:mo><q:mn>9</q:mn></q:mrow></q:math> Ruskai and <r:math xmlns:r="http://www.w3.org/1998/Math/MathML"><r:mrow><r:mi>N</r:mi><r:mo>=</r:mo><r:mn>13</r:mn></r:mrow></r:math> Gross codewords we estimate that the protocol achieves fidelities <s:math xmlns:s="http://www.w3.org/1998/Math/MathML"><s:mrow><s:mo>≳</s:mo><s:mn>95</s:mn><s:mo>%</s:mo></s:mrow></s:math> in the presence of typical experimental noise levels, thus providing a pathway to the preparation of a wide range of useful highly entangled quantum states.</jats:p>},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
C. L. Edmunds; E. Rico; I. Arrazola; G. K. Brennen; M. Meth; R. Blatt; M. Ringbauer
Symmetry-Protected Topological Haldane Phase on a Qudit Quantum Processor Journal Article
In: PRX Quantum, vol. 6, no. 2, 2025, ISSN: 2691-3399.
Abstract | Links | BibTeX | Tags:
@article{Edmunds2025,
title = {Symmetry-Protected Topological Haldane Phase on a Qudit Quantum Processor},
author = {C. L. Edmunds and E. Rico and I. Arrazola and G. K. Brennen and M. Meth and R. Blatt and M. Ringbauer},
doi = {10.1103/prxquantum.6.020349},
issn = {2691-3399},
year = {2025},
date = {2025-06-00},
urldate = {2025-06-00},
journal = {PRX Quantum},
volume = {6},
number = {2},
publisher = {American Physical Society (APS)},
abstract = {<jats:p>Symmetry-protected topological phases have fundamentally changed our understanding of quantum matter. An archetypal example of such a quantum phase of matter is the Haldane phase, containing the spin-1 Heisenberg chain. The intrinsic quantum nature of such phases, however, often makes it challenging to study them using classical means. Here, we use trapped-ion qutrits to natively engineer spin-1 chains within the Haldane phase. Using a scalable deterministic procedure to prepare the Affleck-Kennedy-Lieb-Tasaki (AKLT) state within the Haldane phase, we study the topological features of this system on a qudit quantum processor. Notably, we verify the long-range string order of the state, despite its short-range correlations, and observe spin fractionalization of the physical spin-1 particles into effective qubits at the chain edges, a defining feature of this system. The native realization of Haldane physics on a qudit quantum processor and the scalable preparation procedures open the door to the efficient exploration of a wide range of systems beyond spin-1/2.</jats:p>},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
V. C. Olaya-Agudelo; B. Stewart; C. H. Valahu; R. J. MacDonell; M. J. Millican; V. G. Matsos; F. Scuccimarra; T. R. Tan; I. Kassal
Simulating open-system molecular dynamics on analog quantum computers Journal Article
In: Phys. Rev. Research, vol. 7, no. 2, 2025, ISSN: 2643-1564.
Abstract | Links | BibTeX | Tags:
@article{Olaya-Agudelo2025,
title = {Simulating open-system molecular dynamics on analog quantum computers},
author = {V. C. Olaya-Agudelo and B. Stewart and C. H. Valahu and R. J. MacDonell and M. J. Millican and V. G. Matsos and F. Scuccimarra and T. R. Tan and I. Kassal},
doi = {10.1103/physrevresearch.7.023215},
issn = {2643-1564},
year = {2025},
date = {2025-06-00},
urldate = {2025-06-00},
journal = {Phys. Rev. Research},
volume = {7},
number = {2},
publisher = {American Physical Society (APS)},
abstract = {<jats:p>Interactions of molecules with their environment influence the course and outcome of almost all chemical reactions. However, classical computers struggle to accurately simulate complicated molecule-environment interactions because of the steep growth of computational resources with both molecule size and environment complexity. Therefore, many quantum-chemical simulations are restricted to isolated molecules, whose dynamics can dramatically differ from what happens in an environment. Here, we show that analog quantum simulators can simulate open molecular systems by using the native dissipation of the simulator and injecting additional controllable dissipation. By exploiting the native dissipation to simulate the molecular dissipation—rather than seeing it as a limitation—our approach enables longer simulations of open systems than are possible for closed systems. In particular, we show that trapped-ion simulators using a mixed qudit-boson (MQB) encoding could simulate molecules in a wide range of condensed phases by implementing widely used dissipative processes within the Lindblad formalism, including pure dephasing and both electronic and vibrational relaxation. The MQB open-system simulations require significantly fewer additional quantum resources compared to both classical and digital quantum approaches.</jats:p>},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
B. W. Citarellaa; C. Kartsonaki; E. D. Ibáñez-Prada; B. P. Gonçalves; J. Baruch; M. Escher; M. G. Pritchard; J. Wei; F. Philippy; A. Dagens; M. Halle; J. Lee; D. J. Kutsogiannis; E-J. Wils; M. A. Fernandes; B. K. T. Vijayaraghavan; P. K. Panda; I. Martin-Loeches; S. Ohshimo; A. Zainul Fatoni; P. Horby; J. Dunning; J. Rellop; L. Merson; A. Rojeka; M. Vaillant; P. Olliaro; L. F. Reyesa; ISARIC Clinical Characterisation Group
Characteristics and outcomes of COVID-19 patients admitted to hospital with and without respiratory symptoms Journal Article
In: Heliyon, vol. 10, iss. 10, 2025, ISSN: 2405-8440.
@article{nokey,
title = {Characteristics and outcomes of COVID-19 patients admitted to hospital with and without respiratory symptoms},
author = {B. W. Citarellaa and C. Kartsonaki and E. D. Ibáñez-Prada and B. P. Gonçalves and J. Baruch and M. Escher and M. G. Pritchard and J. Wei and F. Philippy and A. Dagens and M. Halle and J. Lee and D. J. Kutsogiannis and E-J. Wils and M. A. Fernandes and B. K. T. Vijayaraghavan and P. K. Panda and I. Martin-Loeches and S. Ohshimo and A. Zainul Fatoni and P. Horby and J. Dunning and J. Rellop and L. Merson and A. Rojeka and M. Vaillant and P. Olliaro and L. F. Reyesa and ISARIC Clinical Characterisation Group},
doi = {10.1016/j.heliyon.2024.e29591},
issn = {2405-8440},
year = {2025},
date = {2025-05-30},
urldate = {2025-05-30},
journal = {Heliyon},
volume = {10},
issue = {10},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
A. P. Quiskamp; G. R. Flower; S. Samuels; B. T. McAllister; P. Altin; E. N. Ivanov; M. Goryachev; M. E. Tobar
Near-quantum-limited axion dark matter search with the ORGAN experiment around $26text text mathrmensuremathmumathrmeV$ Journal Article
In: Phys. Rev. D, vol. 111, iss. 9, pp. 095007, 2025.
@article{PhysRevD.111.095007,
title = {Near-quantum-limited axion dark matter search with the ORGAN experiment around $26text text mathrmensuremathmumathrmeV$},
author = {A. P. Quiskamp and G. R. Flower and S. Samuels and B. T. McAllister and P. Altin and E. N. Ivanov and M. Goryachev and M. E. Tobar},
url = {https://link.aps.org/doi/10.1103/PhysRevD.111.095007},
doi = {10.1103/PhysRevD.111.095007},
year = {2025},
date = {2025-05-01},
urldate = {2025-05-01},
journal = {Phys. Rev. D},
volume = {111},
issue = {9},
pages = {095007},
publisher = {American Physical Society},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
M. Guzzetti; D. Zhang; C. Goodman; C. Hanretty; J. Sinnis; L. J. Rosenberg; G. Rybka; J. Clarke; I. Siddiqi; A. S. Chou; M. Hollister; S. Knirck; A. Sonnenschein; T. J. Caligiure; J. R. Gleason; A. T. Hipp; P. Sikivie; M. E. Solano; N. S. Sullivan; D. B. Tanner; R. Khatiwada; G. Carosi; N. Du; C. Cisneros; N. Robertson; N. Woollett; L. D. Duffy; C. Boutan; T. Braine; N. S. Oblath; M. S. Taubman; E. Lentz; E. J. Daw; C. Mostyn; M. G. Perry; C. Bartram; T. A. Dyson; C. L. Kuo; S. Ruppert; M. O. Withers; A. K. Yi; B. T. McAllister; J. H. Buckley; C. Gaikwad; J. Hoffman; K. W. Murch; J. Russell; M. Goryachev; E. Hartman; A. Quiskamp; M. E. Tobar
Improved receiver noise calibration for ADMX axion search: 4.54 to $5.41text text mathrmensuremathmueV$ Journal Article
In: Phys. Rev. D, vol. 111, iss. 9, pp. 092012, 2025.
@article{PhysRevD.111.092012,
title = {Improved receiver noise calibration for ADMX axion search: 4.54 to $5.41text text mathrmensuremathmueV$},
author = {M. Guzzetti and D. Zhang and C. Goodman and C. Hanretty and J. Sinnis and L. J. Rosenberg and G. Rybka and J. Clarke and I. Siddiqi and A. S. Chou and M. Hollister and S. Knirck and A. Sonnenschein and T. J. Caligiure and J. R. Gleason and A. T. Hipp and P. Sikivie and M. E. Solano and N. S. Sullivan and D. B. Tanner and R. Khatiwada and G. Carosi and N. Du and C. Cisneros and N. Robertson and N. Woollett and L. D. Duffy and C. Boutan and T. Braine and N. S. Oblath and M. S. Taubman and E. Lentz and E. J. Daw and C. Mostyn and M. G. Perry and C. Bartram and T. A. Dyson and C. L. Kuo and S. Ruppert and M. O. Withers and A. K. Yi and B. T. McAllister and J. H. Buckley and C. Gaikwad and J. Hoffman and K. W. Murch and J. Russell and M. Goryachev and E. Hartman and A. Quiskamp and M. E. Tobar},
url = {https://link.aps.org/doi/10.1103/PhysRevD.111.092012},
doi = {10.1103/PhysRevD.111.092012},
year = {2025},
date = {2025-05-01},
urldate = {2025-05-01},
journal = {Phys. Rev. D},
volume = {111},
issue = {9},
pages = {092012},
publisher = {American Physical Society},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
H. Apel; N. Baspin
Simulating Sparse Hamiltonians on 2D Lattices Journal Article
In: Phys. Rev. Lett., vol. 134, no. 17, 2025, ISSN: 1079-7114.
Abstract | Links | BibTeX | Tags:
@article{Apel2025,
title = {Simulating Sparse Hamiltonians on 2D Lattices},
author = {H. Apel and N. Baspin},
doi = {10.1103/physrevlett.134.170602},
issn = {1079-7114},
year = {2025},
date = {2025-05-00},
urldate = {2025-05-00},
journal = {Phys. Rev. Lett.},
volume = {134},
number = {17},
publisher = {American Physical Society (APS)},
abstract = {<jats:p>Systems with sparse, yet long-range interactions, form a rich class capable of exhibiting various interesting physics, including good error correction. In this Letter we show how to simulate any sparse Pauli Hamiltonian with a 2D nearest neighbor Hamiltonian, using fewer resources than previous techniques. As an application we demonstrate how to simulate a good quantum code Hamiltonian, effectively approximating a <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mrow><a:mo stretchy="false">[</a:mo><a:mo stretchy="false">[</a:mo><a:mi>N</a:mi><a:mo>,</a:mo><a:mi mathvariant="normal">Ω</a:mi><a:mo stretchy="false">(</a:mo><a:msqrt><a:mrow><a:mi>N</a:mi></a:mrow></a:msqrt><a:mo stretchy="false">)</a:mo><a:mo>,</a:mo><a:mi mathvariant="normal">Ω</a:mi><a:mo stretchy="false">(</a:mo><a:msqrt><a:mrow><a:mi>N</a:mi></a:mrow></a:msqrt><a:mo stretchy="false">)</a:mo><a:mo stretchy="false">]</a:mo><a:mo stretchy="false">]</a:mo></a:mrow></a:math> code in two dimensions.</jats:p>},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
G. Zhao; A. C. Doherty; I. H. Kim
Energy Barrier of Hypergraph Product Codes Journal Article
In: Phys. Rev. Lett., vol. 134, no. 18, 2025, ISSN: 1079-7114.
@article{Zhao2025,
title = {Energy Barrier of Hypergraph Product Codes},
author = {G. Zhao and A. C. Doherty and I. H. Kim},
doi = {10.1103/physrevlett.134.180601},
issn = {1079-7114},
year = {2025},
date = {2025-05-00},
urldate = {2025-05-00},
journal = {Phys. Rev. Lett.},
volume = {134},
number = {18},
publisher = {American Physical Society (APS)},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
R. Y. Su; J. Y. Huang; N. Dumoulin Stuyck; M. Feng; W. Gilbert; T. J. Evans; W. H. Lim; F. E. Hudson; K. W. Chan; W. Huang; K. M. Itoh; R. Harper; S. D. Bartlett; C. H. Yang; A. Laucht; A. Saraiva; A. S. Dzurak; T. Tanttu
Characterizing non-Markovian quantum processes by fast Bayesian tomography Journal Article
In: Phys. Rev. A, vol. 111, no. 5, 2025, ISSN: 2469-9934.
@article{Su2025,
title = {Characterizing non-Markovian quantum processes by fast Bayesian tomography},
author = {R. Y. Su and J. Y. Huang and N. Dumoulin Stuyck and M. Feng and W. Gilbert and T. J. Evans and W. H. Lim and F. E. Hudson and K. W. Chan and W. Huang and K. M. Itoh and R. Harper and S. D. Bartlett and C. H. Yang and A. Laucht and A. Saraiva and A. S. Dzurak and T. Tanttu},
doi = {10.1103/physreva.111.052425},
issn = {2469-9934},
year = {2025},
date = {2025-05-00},
urldate = {2025-05-00},
journal = {Phys. Rev. A},
volume = {111},
number = {5},
publisher = {American Physical Society (APS)},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
L. Sementilli; D. M. Lukin; H. Lee; J. Yang; E. Romero; J. Vučković; W. P. Bowen
Low-Dissipation Nanomechanical Devices from Monocrystalline Silicon Carbide Journal Article
In: Nano Lett., vol. 25, no. 15, pp. 6069–6075, 2025, ISSN: 1530-6992.
@article{Sementilli2025,
title = {Low-Dissipation Nanomechanical Devices from Monocrystalline Silicon Carbide},
author = {L. Sementilli and D. M. Lukin and H. Lee and J. Yang and E. Romero and J. Vučković and W. P. Bowen},
doi = {10.1021/acs.nanolett.4c06475},
issn = {1530-6992},
year = {2025},
date = {2025-04-16},
urldate = {2025-04-16},
journal = {Nano Lett.},
volume = {25},
number = {15},
pages = {6069--6075},
publisher = {American Chemical Society (ACS)},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
L. Serino; M. Rambach; B. Brecht; J. Romero; C. Silberhorn
Self-guided tomography of time-frequency qudits Journal Article
In: Quantum Sci. Technol., vol. 10, no. 2, 2025, ISSN: 2058-9565.
Abstract | Links | BibTeX | Tags:
@article{Serino2025,
title = {Self-guided tomography of time-frequency qudits},
author = {L. Serino and M. Rambach and B. Brecht and J. Romero and C. Silberhorn},
doi = {10.1088/2058-9565/adb0ea},
issn = {2058-9565},
year = {2025},
date = {2025-04-01},
urldate = {2025-04-01},
journal = {Quantum Sci. Technol.},
volume = {10},
number = {2},
publisher = {IOP Publishing},
abstract = {<jats:title>Abstract</jats:title>
<jats:p>High-dimensional time-frequency encodings have the potential to significantly advance quantum information science; however, practical applications require precise knowledge of the encoded quantum states, which becomes increasingly challenging for larger Hilbert spaces. Self-guided tomography (SGT) has emerged as a practical and scalable technique for this purpose in the spatial domain. Here, we apply SGT to estimate time-frequency states using a multi-output quantum pulse gate. We achieve fidelities of more than 99% for 3- and 5-dimensional states without the need for calibration or post-processing. We demonstrate the robustness of SGT against statistical and environmental noise, highlighting its efficacy in the photon-starved regime typical of quantum information applications.</jats:p>},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
<jats:p>High-dimensional time-frequency encodings have the potential to significantly advance quantum information science; however, practical applications require precise knowledge of the encoded quantum states, which becomes increasingly challenging for larger Hilbert spaces. Self-guided tomography (SGT) has emerged as a practical and scalable technique for this purpose in the spatial domain. Here, we apply SGT to estimate time-frequency states using a multi-output quantum pulse gate. We achieve fidelities of more than 99% for 3- and 5-dimensional states without the need for calibration or post-processing. We demonstrate the robustness of SGT against statistical and environmental noise, highlighting its efficacy in the photon-starved regime typical of quantum information applications.</jats:p>