Speaker: Rohit Navarathna
Title: Neural networks for on-the-fly single-shot state classification
Abstract: Neural networks have proven to be efficient for a number of practical applications ranging from image recognition to identifying phase transitions in quantum physics models. In this talk, we investigate the application of neural networks to state classification in a single-shot quantum measurement. We use dispersive readout of a superconducting transmon circuit to demonstrate an increase in assignment fidelity for both two and three state classification. More importantly, our method is ready for on-the-fly data processing without overhead or need for large data transfer to a hard drive. In addition we demonstrate the capacity of neural networks to be trained against experimental imperfections, such as phase drift of a local oscillator in a heterodyne detection scheme.
Bio: Rohit Navarathna completed his MSc in physics at the Birla Institute of Technology and Science, Pilani. His Master’s thesis, 3D Supercondcting Transmon Qubit, was completed at a superconducting devices lab in the Indian Institute of Science, Bangalore. The thesis was intriguing enough that he continued to work in this lab for another year, fabricating and testing transmon and Josephson parametric devices. In October 2018, he joined the SQDLab as a PhD student to continue learning about superconducting quantum circuits.
Recordings of past seminars are available to EQUS members via the Hub (requires login).
The Australian Research Council Centre of Excellence for Engineered Quantum Systems (EQUS) acknowledges the Traditional Owners of Country throughout Australia and their continuing connection to lands, waters and communities. We pay our respects to Aboriginal and Torres Strait Islander cultures and to Elders past and present.